Cortechs.ai | The importance of patient positioning

The importance of patient positioning

In this post we discuss a case study detailing the importance of properly positioning and land marking the patient when performing a NeuroQuant® volumetric analysis.

glabellarWhen positioning a patient on the MRI table, land marking the X, Y and Z coordinates in the glabellar region is critical (see image). Land marking the patient in this region of the head, specifically the area between the eyebrows and above the nose, allows the center of the brain to align with the isocenter of the magnetic field. Magnetic field inhomogeneties are at their smallest magnitudes in isocenter. Therefore, positioning the head away from the isocenter in the + or – direction will cause greater distortion introduced by gradient nonlinearity.

If a sequence is acquired and uploaded to NeuroQuant with any of the X, Y or Z coordinates outside +/-100mm, automated volumetric analysis cannot be performed. An error message will be returned to the queue monitor and/or PACS. Below is an example of the NeuroQuant error message that would be generated in this case.

Unsuccessful patient positioning

Automated volumetric analysis is not possible in these instances. If NeuroQuant returns such an error message, re-scanning the patient with the scan origin centered appropriately is advisable.

Important note: If your patient is having an MRI performed on a body part other than the brain (i.e. cervical, thoracic, lumbar spine) it is very important to re-establish the glabellar region of the head as isocenter prior to acquiring the NeuroQuant volumetric scan.

Interested in learning more about how to ensure accurate NeuroQuant output results?

  • Explore the importance of using a 3D T1 sagittal MRI sequences for NeuroQuant analysis. You can read that blog post here.
  • Review how to ensure accurate NeuroQuant processing results. You can read that blog post here.
  • Understand why contrast agents are not used to achieve quality segmentation with NeuroQuant. You can read that blog post here.
  • Examine why good alignment to atlas is necessary. You can read that blog post here.

Additionally, more information about using and processing NeuroQuant can be found here.

References:

  1. Caramanos Z. et al. Gradient distortions in MRI: characterizing and correcting for their effects on SIENNA-generated measure of brain volume change. Neuroimage, 2010, Jan15:49(2):1601-11.
  1. Velthuizen R. et al. Review and evaluation of MRI nonuniformity for brain tumor response measurements. Med. phys. 25, 1655(1998).

Cortechs.ai | The importance of patient positioning

More Resources

10/15/2025

Sharper Screening, Smarter Biopsies: OnQ Prostate and the Next Step in Imaging

Read to learn how OnQ Prostate goes beyond existing solutions like DynaCAD and redefines biopsy precision

10/14/2025

Cortechs.ai Acquires ZepMed to Expand AI-Powered Neuroimaging Capabilities

This strategic acquisition strengthens Cortechs.ai’s position at the forefront of radiological innovation and expands its suite of best-in-class solutions

10/07/2025

Cortechs.ai Expands Partnership with Strategic Radiology to Advance Imaging Innovation Across Private Practices

Cortechs.ai and Strategic Radiology have now broadened their alliance to include Cortechs.ai’s full suite of imaging solutions.

10/06/2025

Clinical Performance of NeuroQuant: Transforming Brain MRI Analysis

NeuroQuant has consistently demonstrated strong clinical performance across multiple conditions, including Alzheimer’s , epilepsy, TBI, and MS.

10/02/2025

WEBINAR: Navigating Category III CPT Codes for Quantitative Imaging

Leveraging Compatible CPT Codes for NeuroQuant and OnQ Prostate

09/29/2025

The Role of NeuroQuant in Supporting Alzheimer’s Disease Care

NeuroQuant equips clinicians and researchers with data that can support earlier recognition of disease, track progression, and evaluate treatment efficacy.
Scroll to Top