Cortechs.ai | Auto CT registration improves sensitivity to ventricular volume change

Auto CT registration improves sensitivity to ventricular volume change

Automated CT registration tool improves sensitivity to change in ventricular volume in patients with shunts and drains

A retrospective evaluation of ventricular shunt or EVD patients who underwent sequential head CT scans with an automated CT registration tool (CT CoPilot), assessing reader ability to discern change in ventricular volume between scans using standard axial CT images versus reformats and subtraction images generated by the registration tool. 2020.

[button]Download[/button]

More Resources

11/19/2025

Philips and Cortechs.ai extend partnership to advance quantitative neuroimaging and strengthen Philips’ leadership in precision diagnostics in neurology

The companies will integrate Cortechs.ai’s advanced AI-enabled neuroimaging analytics directly into Philips’ MR systems.

11/17/2025

Unlocking the Value of NeuroQuant Reports: Different Use Cases Across Clinical Practice

From neurodegeneration and demyelination to development, trauma, and seizures, NeuroQuant supports better decision‑making, communication, and patient care

11/17/2025

Case Study: Augmenting Prostate Imaging Programs with OnQ™ Prostate

Discover how Imaging Healthcare Specialists integrated OnQ™ Prostate to enhance lesion visibility, boost diagnostic confidence, and improve communication.

11/04/2025

NeuroQuant Dementia in Different Use Cases 

NeuroQuant transforms brain imaging into a measurable biomarker for neurodegeneration by combining volumetric data with clinical expertise.

10/29/2025

Enhancing Brain Tumor Treatment with RT STRUCT Images: The Promise of Automation

Automating the generation of RT STRUCT images with NeuroQuant Brain Tumor can streamline workflows and elevate the standard of care

10/15/2025

Sharper Screening, Smarter Biopsies: OnQ Prostate and the Next Step in Imaging

Read to learn how OnQ Prostate goes beyond existing solutions like DynaCAD and redefines biopsy precision
Scroll to Top