Cortechs.ai | Are you positioning patients correctly?

Are you positioning patients correctly?

In this post we discuss a case study detailing the importance of properly positioning and land marking the patient when performing a NeuroQuant® volumetric analysis.

glabellarWhen positioning a patient on the MRI table, land marking the X, Y and Z coordinates in the glabellar region is critical (see image). Land marking the patient in this region of the head, specifically the area between the eyebrows and above the nose, allows the center of the brain to align with the isocenter of the magnetic field. Magnetic field inhomogeneties are at their smallest magnitudes in isocenter. Therefore, positioning the head away from the isocenter in the + or – direction will cause greater distortion introduced by gradient nonlinearity.

If a sequence is acquired and uploaded to NeuroQuant with any of the X, Y or Z coordinates outside +/-100mm, automated volumetric analysis cannot be performed. An error message will be returned to the queue monitor and/or PACS. Below is an example of the NeuroQuant error message that would be generated in this case.

Cortechs.ai | Are you positioning patients correctly?

Automated volumetric analysis is not possible in these instances. If NeuroQuant returns such an error message, re-scanning the patient with the scan origin centered appropriately is advisable.

Important note: If your patient is having an MRI performed on a body part other than the brain (i.e. cervical, thoracic, lumbar spine) it is very important to re-establish the glabellar region of the head as isocenter prior to acquiring the NeuroQuant volumetric scan.

Interested in learning more about how to ensure accurate NeuroQuant output results?

  • Explore the importance of using a 3D T1 sagittal MRI sequences for NeuroQuant analysis. You can read that blog post here.
  • Review how to ensure accurate NeuroQuant processing results. You can read that blog post here.
  • Understand why contrast agents are not used to achieve quality segmentation with NeuroQuant. You can read that blog post here.
  • Examine why good alignment to atlas is necessary. You can read that blog post here.

Additionally, more information about using and processing NeuroQuant can be found here.

References:

  1. Caramanos Z. et al. Gradient distortions in MRI: characterizing and correcting for their effects on SIENNA-generated measure of brain volume change. Neuroimage, 2010, Jan15:49(2):1601-11.
  1. Velthuizen R. et al. Review and evaluation of MRI nonuniformity for brain tumor response measurements. Med. phys. 25, 1655(1998).

More Resources

02/06/2026

NeuroQuant Normative Database: A Standard for Age- and Sex-Specific Brain Volumetry

Whitepaper: How Cortechs.ai’s normative database was created to accurately compare an individual’s brain structure volume to a healthy population.

01/22/2026

Reflecting on a Transformative Year at Cortechs.ai

As we enter 2026, we want to take a moment to reflect on what has been a truly impactful year at Cortechs.ai.

12/18/2025

Reimbursement Essentials for Quantitative Imaging: Key Takeaways From Our Expert Webinar

Our reimbursement webinar walked through best practices for billing, coding, and securing payment for NeuroQuant and OnQ Prostate, helping inform providers.

12/15/2025

OnQ Prostate for Radiation Oncology

OnQ Prostate is at the forefront of advanced imaging to empower the delivery of true precision therapies.

12/10/2025

Reflections on RSNA 2025 and What We Learned at the Cortechs.ai Booth 

If there was one overall takeaway from RSNA 2025, it’s that clinicians are ready for tools that reduce manual work and make reporting more consistent.

12/09/2025

Dementia Imaging: Case-based PET/MRI Approach

Join us for a webinar that will unlock the latest insights in dementia imaging with Dr. Ana M. Franceschi, MD PhD.
Scroll to Top