Cortechs.ai | Are you positioning patients correctly?

Are you positioning patients correctly?

In this post we discuss a case study detailing the importance of properly positioning and land marking the patient when performing a NeuroQuant® volumetric analysis.

glabellarWhen positioning a patient on the MRI table, land marking the X, Y and Z coordinates in the glabellar region is critical (see image). Land marking the patient in this region of the head, specifically the area between the eyebrows and above the nose, allows the center of the brain to align with the isocenter of the magnetic field. Magnetic field inhomogeneties are at their smallest magnitudes in isocenter. Therefore, positioning the head away from the isocenter in the + or – direction will cause greater distortion introduced by gradient nonlinearity.

If a sequence is acquired and uploaded to NeuroQuant with any of the X, Y or Z coordinates outside +/-100mm, automated volumetric analysis cannot be performed. An error message will be returned to the queue monitor and/or PACS. Below is an example of the NeuroQuant error message that would be generated in this case.

Cortechs.ai | Are you positioning patients correctly?

Automated volumetric analysis is not possible in these instances. If NeuroQuant returns such an error message, re-scanning the patient with the scan origin centered appropriately is advisable.

Important note: If your patient is having an MRI performed on a body part other than the brain (i.e. cervical, thoracic, lumbar spine) it is very important to re-establish the glabellar region of the head as isocenter prior to acquiring the NeuroQuant volumetric scan.

Interested in learning more about how to ensure accurate NeuroQuant output results?

  • Explore the importance of using a 3D T1 sagittal MRI sequences for NeuroQuant analysis. You can read that blog post here.
  • Review how to ensure accurate NeuroQuant processing results. You can read that blog post here.
  • Understand why contrast agents are not used to achieve quality segmentation with NeuroQuant. You can read that blog post here.
  • Examine why good alignment to atlas is necessary. You can read that blog post here.

Additionally, more information about using and processing NeuroQuant can be found here.

References:

  1. Caramanos Z. et al. Gradient distortions in MRI: characterizing and correcting for their effects on SIENNA-generated measure of brain volume change. Neuroimage, 2010, Jan15:49(2):1601-11.
  1. Velthuizen R. et al. Review and evaluation of MRI nonuniformity for brain tumor response measurements. Med. phys. 25, 1655(1998).

More Resources

09/03/2025

Reimbursement Considerations for OnQ Prostate and Category III CPT Codes 0648T & 0649T

Learn how Cat. III CPT codes 0648T and 0649T apply to OnQ™ Prostate, offering guidance for accurate reporting, reimbursement, and building evidence for coverage

09/02/2025

Maximizing the Value of Prostate MRI for the Urologist

Even with expert radiologists or AI models at hand, the challenge remains: how can urologists improve seeing and interpreting cancer?

08/18/2025

Why Bigger Normative Databases Mean Better Brain Imaging

NeuroQuant® 5.2 compares patient brain MRI volumes to over 7,000 healthy scans, giving clinicians clear, percentile-based context for better assessments.

08/07/2025

Navigating Reimbursement for NeuroQuant: Understanding CPT Codes 0865T & 0866T 

Let’s break down the latest category III CPT codes and example clinical use cases that illustrate their value.

07/31/2025

Precision Without the Pressure: Smarter Brain Tumor Monitoring

Learn about NeuroQuant Brain Tumor 2.0 and how it assists clinicians by providing objective quantification and analysis of tumor changes over time.

07/30/2025

Cortechs.ai Announce Next-Gen NeuroQuant Brain Tumor: AI-Driven Metastasis & Meningioma Segmentation 

NeuroQuant Brain Tumor is the first FDA-cleared, cloud-native tool to offer automated volumetric segmentation for brain metastases, meningiomas, and gliomas.
Scroll to Top